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Although statistical significance testing is one of
the most widely-used techniques across science,
previous research has suggested that scientists have
a poor understanding of how it works. If scientists
misunderstand one of their primary inferential tools
the implications are dramatic: potentially unchecked,
unjustified conclusions and wasted resources. Scientists’
apparent difficulties with significance testing have led
to calls for its abandonment or increased reliance on
alternative tools, which would represent a substantial,
untested, shift in scientific practice. However, if
scientists’ understanding of significance testing is
truly as poor as thought, one could argue such
drastic action is required. We present evidence
using a novel reasoning task that scientists may
understand the logic of significance testing better
than previously thought. Scientists may not be as
statistically-challenged as often believed; reforms
should take this into account.
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For most of the past century, the dominant method of statistical inference has been statistical2

significance testing (SST). In a significance test, the statistical evidence in the form of a test statistic3

is compared to what would be expected under a particular hypothesis (often called the “null”4

hypothesis). If it would be surprising to observe evidence as strong as what was observed under5

this hypothesis, the evidence is deemed strong enough to call the assumed hypothesis into doubt,6

at least tentatively [see also 1,2]. The rarity of evidence as strong as what was observed under the7

assumed hypothesis—the so-called p value—is the typical way that results of significance tests8

are reported. The key feature of SST for our purposes is the assessment of evidence by means of9

comparing a result to a “null” distribution.10

Despite the use of SST in a majority of research projects across fields, there is debate over11

whether scientists understand SST and can use it competently. Methodologists and statistical12

cognition researchers point to evidence from questionnaires and vignette studies to argue that13

researchers do not, in fact, grasp the core logic of SST. In one highly influential study of research14

psychologists, Oakes [3] presented six statements about a hypothetical significance test result to15

be categorized as true or false (e.g., “[The p value provides] the probability of the null hypothesis16

being true”). Despite all of these statements being false, 97% of the research psychologists17

categorized at least one as true. Oakes argues that this shows that the participants have an18

“[un]sound understanding of the logic of the significance test” (p. 82).19

Oakes’ basic method and results have been replicated and extended with various groups,20

showing that students [4], instructors [5], and statisticians [6] all misinterpret SST results.21

Moreover, these misinterpretations are difficult to eliminate even through targeted interventions22

[7]. As a result, many have argued that use of SST should be discontinued or dramatically23

reduced, and may even contribute to wide-spread replication problems in the sciences [3,8–11].24

The interpretation of studies of researchers’ understanding of SST is limited, however, by their25

methodology. A typical study presents a vignette describing research results. Statistical results26

are offered to the participants (e.g., a t statistic and p value), who are then asked to explicitly27

give or endorse various interpretations. These responses are taken to represent participants’28

understanding, or misunderstanding, of SST. However, there are reasons to be cautious of29

drawing strong conclusions from these studies, including the abstract nature of such vignettes,30

the lack of investment researchers have in the fictional research, and their disconnection from31

research activity (e.g., experimentation and replication). It is unclear how well vignette studies32

(including ones by the present authors: [12,13]) tap understanding of the core logic of SST rather33

than, say, familiarity with the technical terminology used to present statistical results. Conceptual34

understanding and fluency with common representations are both important, but are distinct.35

A second major piece of evidence for misunderstandings of SST logic is reasoning errors in36

published papers [14–17]. Like evidence from vignette studies, however, these errors are difficult37

to interpret as misunderstandings of SST logic per se. These examples show that whatever process38

lead to the statistical conclusion was flawed in some way, but many processes contribute to such39

conclusions. Cognitive [e.g., 18], technological [e.g., 19], and social processes [e.g., 20] have all40

been assigned some blame for statistical reasoning failures.41

In deciding how to improve statistical reasoning, it is crucial to know where the problems lie.42

The fact of reasoning problems tells us little about their source. In assessing potential interventions,43

however, the source is crucial. Some interventions might focus on the social aspects (e.g.,44

decreasing the need for “significant” results for prestige), some on technological aspects (e.g.,45

presenting statistical results in ways that were previously impossible), and some on cognitive46

aspects (e.g., adopting Bayesian procedures because these are claimed to be better understood).47

To avoid conflating basic reasoning failures and lack of fluency with common statistical48

terminology, we avoid using common statistics—or, indeed, any numbers—at all. Instead of49

focusing on familiar statistical language and tests participants’ fluency with existing procedures,50

we adopt a different approach: we test working scientists’ understanding of the basic conceptual51

framework underlying SST using a simulated experimental task.52



3

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

The key innovation allowing us to focus on SST reasoning was to design an experiment53

that prevents the use of alternative strategies. A critical feature of SST is that the use of a54

null distribution destroys information about effect sizes and sample size. In fact, this aspect of55

SST reasoning is often criticized, while alternative methodologies focus on effect sizes (point56

estimates, confidence intervals, equivalence, likelihood, Bayesian priors/posteriors). We offered57

our participants only the information in a p value, and participants had to understand or discover58

how to obtain that information. Their task was to use this information to come to a decision about59

the true sign of an effect through repeated experimentation.60

If participants have poor understanding of SST, they would 1) often come to the wrong61

conclusion, in spite of ample information; 2) show error rates that are only weakly associated62

with true effect size; 3) be unable to articulate strategies for performing our task; 4) be sensitive63

to misleading, task-irrelevant information; 5) be insensitive to SST-relevant information. The64

scientists in our sample often came to the right conclusion, and their performance showing65

sensitivity to the SST-relevant information they were given. Moreover, they explicitly reported66

using SST strategies. Our results suggest that common methods for assessing scientists’67

competence may miss important aspects of their statistical knowledge, and hence that the case68

for abandoning significance testing may be overstated.69

1. Testing reasoning by withholding information70

In tests of perception, it is common to eliminate one cue in order assess the ability to use another:71

e.g., eliminating brightness cues to test colorblindness [21]. If color is the only useful cue for72

reading a number on a card, deficits in color vision make the number difficult to read. We adopt73

a similar strategy to test statistical reasoning: we eliminate numerical information from statistical74

results to test scientists’ ability to interpret results with reference to a null sampling distribution, a75

central element of SST logic. Without numerical information, many other strategies and heuristics,76

such as confidence intervals, or Bayesian inference, are difficult or impossible to apply.177

Participants were scientists or trainees recruited via social media. Our statistical reasoning78

task required them to perform a series of experiments to judge which of two groups of79

“Christmas elves” — “Jinglies” or “Sparklies” — could make more of a particular toy. A80

demonstration version of the task can be found at https://richarddmorey.github.io/81

Morey_Hoekstra_StatCognition/articles/task_demo.html. Because the study was82

run around the Christmas holiday season, we hoped the theme would make the task more83

engaging. The numerical information for an experiment, including sample size and the test84

statistic, was translated into color and location and displayed as a point on a two-dimensional85

visual interface (Figure 1). Participants could change the sample size per group for each86

experiment (increasing the time required to return a result), but did not know its numerical value.87

Importantly, the meaning of the colors and locations was unknown to the participants, aside from88

the monotone relationship with the sample size and statistical evidence.89

Participants were randomly assigned to one of 15 effect size conditions: either no difference90

(δ= 0), or δ=±0.1, ±0.185, ±0.296, ±0.433, ±0.596,±0.785, or ±1 standard deviation units. Each91

participant had a 25% probability of being assigned δ= 0, with the other 75% being randomly and92

uniformly distributed across the remaining 14 effect size conditions. These true effect sizes were93

not revealed to the participants. Their goal was to determine the sign of the effect (i.e., which of94

the two teams is truly faster).95

Consistent with the fictional two-sample design, statistical evidence for each “experiment”96

was sampled from a normal distribution with mean that depended on the (chosen, but unknown)97

sample size and their randomly assigned effect size:98

Z ∼ Normal(δ
√

n/2, 1)

1A formal statistical explanation showing that the task is difficult or impossible to perform using non-SST logic is given in
Section 3 of Supplement A.

https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/task_demo.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/task_demo.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/task_demo.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/man_supp.html
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(A) Random shuffle reports by one participant in the "wide" condition.

(B) Random shuffle reports by one participant in the "narrow" condition.

(C) Experimental samples by the same participant as shown in (B). This
participant responded that the two groups were the same; the true effect size
was -0.1, so their response was a false negative.

Figure 1: Examples of the experimental interface with several participants’ samples. The x-axis
monotonically (but nonlinearly) related to the strength of the statistical evidence (z statistic)
favoring one group; the y-axis is monotonically (but nonlinearly) related to the sample size.
Underlying numerical values of the statistical evidence and sample sizes were unknown to the
participant. Corresponding p values and vertical lines are given for reference; they were not
shown to the participants.
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The Z test statistic was mapped into a horizontal location on the interface through an arbitrary99

function unknown to the participant. Participants were randomly assigned to one of two mapping100

functions: a “wide” function, and a narrow function (see Supplement A, section 1.2 for full101

mathematical details). Figures 1A and B show the visual effect of this manipulation. Statistically,102

these two conditions were identical; visually, they were not.103

This visual manipulation was crucial to study, because it allows assessment of participants’ use104

of the null sampling distributions. In addition to being able to sample fictional “experiments”,105

participants could sample “random shuffle reports” that were described as the results of106

experiments with random assignment of elves to groups: that is, the result of experiments in107

which the null hypothesis was true. These results took no time to return. Participants were not108

told how to use these samples, only that they might use them.109

Our experiment was constructed such that the only way to assess the evidence in the data110

was by comparison of the fictional experimental results to a null sampling distribution: either111

the one provided by the random shuffle reports, or a simpler null that assumes that the evidence112

will favor one team or the other with 50% probability. Thus, the information afforded only the113

information in a p value, but it was not described as such; participants had to discover for114

themselves how to use the information.115

After sampling as many “experiments” and “random shuffle reports” as they liked,116

participants could report whether they believed Jinglies or Sparklies were the better team, that117

they could not detect a difference, that there was no difference, or that they were bored and118

wanted to stop. Following their decision they were asked several open-ended questions about119

their strategy, along with some opinion and demographic questions. Our central questions are120

whether participants can effectively find the “truth”, whether they report strategies consistent121

with SST, and whether their behaviour shows evidence of strategic SST use.122

Here, we report the results of 506 scientists or trainees who completed the statistical reasoning123

task.124

2. Participant sampling behavior125

Participants sought out information that would be necessary for significance tests. They made126

heavy use of shuffle reports (Figure A2). Across all true effect sizes, participants sampled a median127

of 152 shuffle reports (range: 1-2034; in both panels A and B, lines show robust regression fits [22]).128

Participants also made use of “replications” of the fictional experiments. Figure 2B shows the129

distribution of the number of experiments sampled as a function of the true effect size. Median130

numbers of experiments range from 20 when Jinglies and Sparklies were equally fast, down to 9131

when the true effect size was δ= 1 and thus the effect was relatively easy to detect (Kruskal −132

Wallisχ2(7) = 45.70, p < .001). When the effect size is small and difficult to detect, participants133

experimented more before deciding.134

3. Success rates identifying effect sign135

Decision rates as a function of true effect size are shown in Figure 3.136

Of the 136 participants for whom the null hypothesis was true (i.e. δ= 0), 20 participants137

(14.7%) incorrectly indicated an effect. This is larger than the typically-accepted 5% false positive138

rate in many sciences; however, participants were performing a novel task with no recourse139

to numbers or statistical software. Those who did not indicate an effect when δ= 0 tended to140

indicate that they did not detect an effect (103; 75.7%), which is the correct conclusion from the141

SST perspective. The other 13 (9.6%) indicated that the groups were the same, which under SST142

is typically considered a fallacy.143

When there was a true effect (δ ̸= 0), correct decisions increased as a function of effect size,144

plateauing at about 95%. Of the 370 participants for whom δ ̸= 0, only 2 (0.5%) indicated the145

incorrect team [a sign, or Type S, error; 23]. For larger effect sizes, participants never incorrectly146

indicated that the two groups were the same.147
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Figure 2: Sampling behavior by effect size. Each point represents a participant. A: Number of
samples from the null distribution as a function of true effect size. B: Number of samples of
fictional ’experiments’ as a function of true effect size. Note that the y axis is logarithmically
scaled. Lines are robust regression fits. Positive and negative effect sizes hav been collapsed.
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Figure 4: Statistical evidence underlying participants’ decisions. The Wilcoxon p value (x axis)
used as a rough index of evidential strength in the display. Kernel density estimates for the
evidence are shown for three relevant conclusions. Each point at the bottom represents a single
participant. Filled circles show correct decisions; hollow circles, incorrect decisions. The two
asterisks show sign errors.

Signal detection theory gives us another perspective on the decision rate shown in Figure 3,148

allowing us to correct for the baseline of errors that occur in the null condition [24]. We combine149

the “false alarm” rate when δ= 0 (14.7%) with the “hit rates” for all other conditions using a150

simple signal detection model; see Supplement A, section 8 for model details. The fitted model151

yields d′ parameters that range from 1.41 when δ= 0.1 to 3.24 when δ= 1.152

4. Use of information in the display153

Another way of evaluating participants’ responses is whether they reflect the information in the154

display at the time the decision is made, taking into account all points. To roughly quantify the155

evidence for a difference for each participant, we computed two p values from Wilcoxon tests156

using the fictitious experimental results as they stood when the participant made their decision:157

a signed-rank test on the experimental samples alone, and a rank-sum test between the shuffle158

reports and the experimental samples. These two p values indicate the information available159

to participants using sign-like significance tests and those using the null samples, respectively.160

The rank-sum p value is based on more information and so was typically lower. It makes little161

difference to the qualitative results, but to fairly account for the information available to the162

participant, we used the smaller of the two p values. In general, smaller p values suggest a larger163

observed between the shuffle reports and the experiments, allowing us to compare the stimulus164

the participants were given to their decisions.165
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Figure 4 shows the distribution of Wilcoxon p values (arranged by the direction of the166

decision). Kernel density estimates show the distributions of p values when participants167

indicated that Sparklies were faster, no detection/same, or that Jinglies were faster. With a few168

notable exceptions, participants’ conclusions appear reasonable given the information in the169

display, though a few participants appear to ignore clear evidence of an effect. We provide an170

interactive app for exploring participants’ individual responses at https://richarddmorey.171

shinyapps.io/explore/.172

5. Sensitivity to SST-Relevant Information173

In addition to a random effect size, participants were also randomly assigned to one of two174

transformations of the location/color test statistic from an underlying z statistic. Of particular175

interest was how the transformation affected responding for the same visual deviation from the176

center.177

The visual effects of the manipulation are shown in Figure 1, panels A and B. The two178

experimental conditions used different arbitrary monotone mappings from the underlying Z-179

statistic to the visual space. Intuitively, this would be like deciding to use Z3 instead of Z in180

all Z tests; one would need to adjust the significance criteria to account for the cubing (e.g., use181

|1.963|= 7.53 instead of |1.96| for a α= 0.05 level test), but the underlying test remains the same.182

The manipulation changes only the visual impression of the sampling distributions, allowing us183

to see how sensitive their responses are to the null sampling distribution as represented by the184

random shuffle reports.185

If participants were using the shuffle reports to interpret the data, as would be predicted if they186

were using SST logic, the transformation should affect their interpretation of the visual evidence:187

a visually-extreme point should be more discounted against the sampling distribution that is188

wider. When we break down responses by the visual extremeness of the evidence, responses in189

two conditions should appear different; when we break down responses by statistical extremeness190

(i.e., the p value) responses in the two conditions should appear very similar, because the visual191

manipulation is irrelevant given the p value.192

Figure 5 (top) shows responses (no detect/same or Jinglies/Sparklies) as a function of the193

most extreme experiment sampled (x axis) and the transformation. There was a strong effect of194

the transformation consistent with use of the null sampling distribution; participants randomly195

assigned to the “narrow” evidence transformation responded “Jinglies/Sparklies” for much less196

visually extreme evidence (sequential LRT: χ2
2 = 35.492, p < .001).197

A logistic regression relating responses to the visual extremeness of the evidence and the198

transformation provides predicted probabilities of responding “Jinglies/Sparklies” when the199

visual evidence corresponded to p= 0.05 for the null sampling distribution. In both the wide200

and the narrow conditions, the predicted probability of a “Jinglies/Sparklies” response at the201

critical value was about 22%, despite that in the wide transformation condition this point was202

about twice as visually extreme.203

Applying the same analysis to the responses corrected for their respective sampling204

distributions (Figure 5, bottom) almost completely eliminates the effect of experimental condition,205

as would be expected if most participants were using the sampling distributions to calibrate206

(sequential LRT: χ2
2 = 3.505, p= 0.173). It is noteworthy that when the responses are aligned by207

sampling distribution, the wide condition appears to slightly dominate; this is consistent with208

some participants incorrectly using the non-diagnostic visual extremeness to perform the task. If209

more people had been fooled by the irrelevant width of the null sampling distribution, we would210

expect this effect to be substantially larger.211

6. Self-Reported SST Strategies212

After they reported their decision regarding which team they believed was faster, we asked213

participants three questions about how they performed the task: what was the most salient214

https://richarddmorey.shinyapps.io/explore/
https://richarddmorey.shinyapps.io/explore/
https://richarddmorey.shinyapps.io/explore/
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(A) Predicted response probabilities relative to visual extremity. Vertical lines show the
critical 0.05 for the corresponding null sampling distribution.

(B) Predicted response probabilities relative to the null sampling distributions (implicit
p values).

Figure 5: The effect of the evidence transformation manipulation on responding. Points on top
(narrow scale; q= 7) and bottom (wide scale; q= 3) represent participants’ decisions as a function
of the most extreme experiment sampled. See the methods details for the interpretation of q. “N”
indicates a “no detect” or “same” response; “J/S” indicates a response in favor of a difference
between the groups. Curves show predicted probability by a logistic regression fit with standard
errors.
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Table 1: Frequencies of self-reported strategies.

Strong Only weak Neither Total No shuffles Missing

Count 362 69 75 506 28 29
% 71.54% 13.64% 14.82% 100% 5.53% 5.73%

information for their decision, what was their general strategy, and whether/how they used the215

shuffle reports.216

We coded their responses according to whether they indicated comparing to the shuffle217

reports or using them to assess sampling variability (which we term “strong” significance218

testing strategies), assessing asymmetry in the display (a “weak” significance testing strategy,219

because it ignores information), and whether they explicitly deny using the shuffle reports (see220

Supplement A, section 7 for coding details).221

As Table 1 shows, a large majority of participants (362, 71.54%) indicated using strong222

significance testing strategies. We should be cautious in directly interpreting this high number223

alone, however, because participants were told in the instructions that the shuffle reports could be224

used for assessing sampling variability. We did this to make clear what the shuffle reports were,225

but without explaining how to use them. To some extent, then, the text responses may reflect226

the instructions. However, the data strongly suggest a deeper understanding; first, among the227

responses were richer, lucid descriptions of SST logic, such as:228

“[t]he random [shuffles] showed quite often such ‘strong evidence’, even at high sample229

sizes. That should not happen when the evidence is really strong, so probably the end of230

the scale was not [so] strong evidence. . . The random [shuffles] helped me to judge how231

common misleading evidence in that order of magnitude is, and after 5 samples from the232

real experiment I concluded that this result is probably not misleading evidence.”233

Secondly—and most importantly—the instructions did not tell the participants how they234

should use the shuffles reports, yet many participants gave detailed accounts. Combined with235

the other reported results, this strongly suggests that our participants—with some exceptions—do236

understand the basic SST logic and can deploy it to correctly solve novel problems.237

7. Discussion238

Although it has previously been suggested that scientists have dramatic misunderstandings of239

SST logic, scientists and trainees in our experiment demonstrate both understanding and the240

ability to use the logic to come to the correct conclusion in a simulated statistical task. Moreover,241

they report strategies consistent with SST, and signatures of SST reasoning can be seen in their242

responses. Because we removed numerical effect size and sample size information — making243

strategies other than pure significance testing difficult or impossible to apply — our results244

are evidence that scientists can successfully deploy SST logic. It is still an open question what245

causes typical SST reports to be misunderstood so often, but we have not found evidence that the246

problem is misapprehension of its underlying logic.247

Our findings echo other demonstrations that human reasoning can, under some conditions, be248

better than previously understood. [25,26]. Suggestions that SST be discontinued due to scientists’249

apparent misunderstandings may be hasty. Of course, there may be other reasons to abandon250

SST, but our work shows that given the opportunity, scientists successfully deploy basic SST251

logic. In spite of scientists’ real-life statistical behaviour often resembling a “ritual” [27], when252

we eliminate the ritual — no p value, or any other familiar number, was offered — they think253

statistically, very often arriving at the correct conclusion about the sign of the effect.254
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We wish to emphasize what we cannot, and do not, argue. First, we cannot argue that simply255

because scientists can successfully use SST logic, that they do in real situations, or that specific256

instantiations of SST, such as p values, are used well. We specifically set out to abstract the logic257

away from the typical situations in which scientists use the logic. This has the benefit of being258

helping to identify where problems might be, but the downside that generalizing the results259

will require further work. We also cannot address other potential arguments against SST, such260

as philosophical ones.261

Finally, we hope to provide a fresh method and perspective on a long-standing debate in262

statistical cognition. Simulation-based approaches to teaching statistics have long been touted [28,263

29]. Simulation-based approaches to studying scientists’ statistical reasoning may also profitable,264

particularly in studying reasoning that is difficult for participants to articulate formally. If we are265

to reform statistical education and practice in the sciences, we should base that reform on diverse266

lines of evidence about scientists’ reasoning. Understanding and harnessing scientists’ already-267

existing competence in statistical reasoning is essential to developing effective methodological268

reforms.269

8. Methods270

(a) Participants271

Participants were recruited via social media platforms such as Twitter and Facebook. All272

participants gave informed consent. Data inclusion criteria included sampling at least one shuffle273

report and experimental result, working in a scientific field, having at least some University274

education in science, and that it was their first time participating. Details are given in Supplement275

B.276

After applying all inclusion criteria, 506 participants remained for analysis.277

(b) Experimental Design and Procedure278

Each participant was randomly assigned to one of eight true effect sizes (from δ= 0 to δ= 1)279

and one of two evidence powers (“wide” q= 3 or “narrow” q= 7; see “Evidence Distributions”280

below). The probability of being assigned δ= 0 was 25%, while the remaining effect sizes were281

equally probable at 11%. The probability of assignment to either evidence power was 50%. Details282

are given in Table 1.1 in Supplement A.283

After offering informed consent, participants read the cover story and instructions. During284

the instructions, the participant was introduced to the task through sampling random shuffle285

reports. After a brief recap of the instructions, participants performed the main task — sampling286

either random shuffles or experiments — until they made a decision about which, if either, elf287

group was faster. They were then asked several open-ended questions about their strategy, some288

informational questions (results in Supplement B) and debriefed.289

Qualtrics’ duration estimate indicated that the median time spent on the experiment was 21290

minutes.291

(c) Evidence distributions292

The evidence/horizontal (x) location test statistic presented to the participant was derived from293

a transformed Z statistic:294

Z ∼ Normal(δ
√

n/2, 1)

where δ is a true effect size (randomly assigned to each participant, from 0 to 1) and n is the295

selected but unknown sample size (from 10 to 200 participants per group). Z then transformed to296

https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/man_supp.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/man_supp.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/man_supp.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/man_supp.html
https://richarddmorey.github.io/Morey_Hoekstra_StatCognition/articles/man_supp.html
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the (-1,1) space:297

x= sgn(Z)

[
1−

(
1− Fχ2

1

(
Z2

)) 1
q

]
, −1≤ x≤ 1.

where Fχ2
1

is the cumulative distribution function of a χ2
1 random variable, and q ∈ {3, 7} was298

randomly assigned for each participant. x=−1 represented the left edge of the interface, x= 0299

the middle, and x= 1 the right edge. The setting of q determined how spread out the test statistic300

was on the display. This arbitrary transformation was done to ensure that the test statistic’s301

distribution was unfamiliar to the participant. See Supplement A for more details, including302

graphical depictions of the evidence distributions.303

(d) Coding of open-ended strategy questions304

We determined the coding scheme and independently categorized the first 20 participant,305

discussing the source of disagreements. After categorizing the remaining participants, some306

disagreements were resolved through mutual agreement, and a discussion between the authors307

was had over what caused the disagreements. The remainder of the disagreements were re-coded308

separately, and a final round of discussion resolved the remaining disagreements. The coding of309

participants’ responses is described in detail in Supplement B.310
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