Chapter 17 Multiple DV designs
## Parsed with column specification:
## cols(
## Verbal = col_double(),
## Math = col_double(),
## Sex = col_character()
## )
17.1 Description
17.2 Visualization
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
17.3 Why not \(t\) tests?
## $Math
##
## Welch Two Sample t-test
##
## data: score by Sex
## t = -2, df = 158, p-value = 0.06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -59.353 0.969
## sample estimates:
## mean in group F mean in group M
## 598 627
##
##
## $Verbal
##
## Welch Two Sample t-test
##
## data: score by Sex
## t = 0.7, df = 160, p-value = 0.5
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -19.2 42.6
## sample estimates:
## mean in group F mean in group M
## 602 590
17.4 Why not ANCOVA?
##
## Call:
## lm(formula = Verbal ~ Sex * Math, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -254.73 -46.29 -1.98 42.55 192.55
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 579.4668 8.0852 71.67 < 2e-16 ***
## Sex -65.5422 22.6875 -2.89 0.0044 **
## Math 0.7382 0.0889 8.31 4.2e-14 ***
## Sex:Math 0.0662 0.2344 0.28 0.7780
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 71.4 on 158 degrees of freedom
## Multiple R-squared: 0.495, Adjusted R-squared: 0.486
## F-statistic: 51.7 on 3 and 158 DF, p-value: <2e-16
## `geom_smooth()` using formula 'y ~ x'
17.5 MANOVA
Term | d.f. | Pillai's trace | \(F\) | Num. d.f. | Denom. d.f. | Sig. \(p\) |
---|---|---|---|---|---|---|
Sex | 1 | 0.071 | 6.085 | 2 | 159 | 0.003 |
Residuals | 160 |
17.5.1 Model check
17.6 Linear Discriminant Analysis
## Call:
## lda(Sex ~ ., data = ., method = "moment")
##
## Prior probabilities of groups:
## F M
## 0.506 0.494
##
## Group means:
## Verbal Math
## F 602 598
## M 590 627
##
## Coefficients of linear discriminants:
## LD1
## Verbal -0.0118
## Math 0.0141
## Loading required package: lattice
## Confusion Matrix and Statistics
##
## Reference
## Prediction F M
## F 49 33
## M 33 47
##
## Accuracy : 0.593
## 95% CI : (0.513, 0.669)
## No Information Rate : 0.506
## P-Value [Acc > NIR] : 0.0167
##
## Kappa : 0.185
##
## Mcnemar's Test P-Value : 1.0000
##
## Sensitivity : 0.598
## Specificity : 0.588
## Pos Pred Value : 0.598
## Neg Pred Value : 0.588
## Prevalence : 0.506
## Detection Rate : 0.302
## Detection Prevalence : 0.506
## Balanced Accuracy : 0.593
##
## 'Positive' Class : F
##
×