James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J. R., Milton, A. L., & Holmes, E. A. (2015). Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. Psychological Science, 26, 1201-1215. Obtained from journals.sagepub.com/doi/abs/10.1177/0956797615583071
##
## Kendall's rank correlation tau
##
## data: .$post_within_z and .$Day_Zero_Number_of_Intrusions
## z = 4, p-value = 3e-05
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## 0.361
## `geom_smooth()` using formula 'y ~ x'
9.2 Visualization
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
## `summarise()` ungrouping output (override with `.groups` argument)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: Days_One_to_Seven_Number_of_Intrusions by Condition
## Fligner-Killeen:med chi-squared = 6, df = 3, p-value = 0.1
Model statistics
Multiple \(R^2\)
0.143
Multiple \(R^2_{adj}\)
0.106
\(F_{3,68}\)
3.795
Sig. (\(p\))
0.014
Resid. SD
3.176
Resid. df
68
Analysis of Variance table
Term
SS
d.f.
MS
\(F\)
Sig. (\(p\))
\(\eta^2\)
\(\eta^2_p\)
Condition
114.819
3
38.273
3.795
0.014
0.143
0.143
Residuals
685.833
68
10.086
Tukey's HSD post-hoc tests
Contrast
Null
Estimate
Sig. (\(p\))
React.-No task
0
−0.278
0.994
React.-Tetris
0
0.944
0.809
Tetris-No task
0
−1.222
0.657
Tetris-R. & T.
0
2.000
0.242
React.-R. & T.
0
2.944
0.034
R. & T.-No task
0
−3.222
0.017
9.3 Transformation
9.3.1 Logarithmic
Because 0 is a possible count, and \(\log(0) = -\infty\), we cannot use a log transformation to reduce the skew. There are other possibilities, such as \(\sqrt{x}\). Here I will use a simple modification of the log transformation: \(\log(1+x)\). Adding 1 means that we no longer have the problem with the 0 counts, because \(log(1 + 0) = 0\).
As you can see in the dotplot below, the problematic skew is reduced.
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
Model statistics
\(\log(1+x)\)-transformed DV
Multiple \(R^2\)
0.202
Multiple \(R^2_{adj}\)
0.167
\(F_{3,68}\)
5.744
Sig. (\(p\))
0.001
Resid. SD
0.600
Resid. df
68
Analysis of Variance table
\(\log(1+x)\)transformed DV
Term
SS
d.f.
MS
\(F\)
Sig. (\(p\))
Condition
6.205
3
2.068
5.744
0.001
Residuals
24.485
68
0.360
Tukey's HSD post-hoc tests
\(\log(1+x)\)-transformed DV
Contrast
Null
Estimate
Sig. (\(p\))
React.-No task
0
0.039
0.997
Tetris-No task
0
−0.148
0.881
React.-Tetris
0
0.187
0.787
Tetris-R. & T.
0
0.547
0.039
R. & T.-No task
0
−0.695
0.005
React.-R. & T.
0
0.734
0.003
9.3.2 Rank
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
Model statistics
Rank-transformed DV
Multiple \(R^2\)
0.191
Multiple \(R^2_{adj}\)
0.155
\(F_{3,68}\)
5.350
Sig. (\(p\))
0.002
Resid. SD
19.046
Resid. df
68
Analysis of Variance table
Rank-transformed DV
Term
SS
d.f.
MS
\(F\)
Sig. (\(p\))
Condition
5,822.500
3
1,940.833
5.350
0.002
Residuals
24,667.500
68
362.757
Tukey's HSD post-hoc tests
Rank-transformed DV
Contrast
Null
Estimate
Sig. (\(p\))
React.-No task
0
1.833
0.992
Tetris-No task
0
−4.944
0.864
React.-Tetris
0
6.778
0.710
Tetris-R. & T.
0
16.056
0.064
R. & T.-No task
0
−21.000
0.008
React.-R. & T.
0
22.833
0.003
9.4 Nonparametric
##
## Kruskal-Wallis rank sum test
##
## data: Days_One_to_Seven_Number_of_Intrusions by Condition
## Kruskal-Wallis chi-squared = 14, df = 3, p-value = 0.004
Dunn's nonparametric post-hoc tests
Sorted by significance
Contrast
Z statistic
Sig. (\(p\))
React. - Tetris
0.981
0.979
No task - Tetris
0.716
0.948
No task - React.
−0.265
0.791
R. & T. - Tetris
−2.324
0.080
No task - R. & T.
3.040
0.012
R. & T. - React.
−3.306
0.006
References
James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J. R., Milton, A. L., & Holmes, E. A. (2015). Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. Psychological Science, 26(8), 1201–1215. Retrieved from https://journals.sagepub.com/doi/abs/10.1177/0956797615583071