Chapter 9 One-way designs

One way designs

(James et al., 2015)

James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J. R., Milton, A. L., & Holmes, E. A. (2015). Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. Psychological Science, 26, 1201-1215. Obtained from journals.sagepub.com/doi/abs/10.1177/0956797615583071

## Parsed with column specification:
## cols(
##   .default = col_double()
## )
## See spec(...) for full column specifications.


9.1 Sanity checks

## 
##  Kendall's rank correlation tau
## 
## data:  .$post_within_z and .$Day_Zero_Number_of_Intrusions
## z = 4, p-value = 3e-05
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##   tau 
## 0.361
## `geom_smooth()` using formula 'y ~ x'

9.2 Visualization

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

## `summarise()` ungrouping output (override with `.groups` argument)

## 
##  Fligner-Killeen test of homogeneity of variances
## 
## data:  Days_One_to_Seven_Number_of_Intrusions by Condition
## Fligner-Killeen:med chi-squared = 6, df = 3, p-value = 0.1

Model statistics
Multiple \(R^2\) 0.143
Multiple \(R^2_{adj}\) 0.106
\(F_{3,68}\) 3.795
Sig. (\(p\)) 0.014
Resid. SD 3.176
Resid. df 68
Analysis of Variance table
Term SS d.f. MS \(F\) Sig. (\(p\)) \(\eta^2\) \(\eta^2_p\)
Condition 114.819 3 38.273 3.795 0.014 0.143 0.143
Residuals 685.833 68 10.086

Tukey's HSD post-hoc tests
Contrast Null Estimate Sig. (\(p\))
React.-No task 0 −0.278 0.994
React.-Tetris 0 0.944 0.809
Tetris-No task 0 −1.222 0.657
Tetris-R. & T. 0 2.000 0.242
React.-R. & T. 0 2.944 0.034
R. & T.-No task 0 −3.222 0.017

9.3 Transformation

9.3.1 Logarithmic

Because 0 is a possible count, and \(\log(0) = -\infty\), we cannot use a log transformation to reduce the skew. There are other possibilities, such as \(\sqrt{x}\). Here I will use a simple modification of the log transformation: \(\log(1+x)\). Adding 1 means that we no longer have the problem with the 0 counts, because \(log(1 + 0) = 0\).

As you can see in the dotplot below, the problematic skew is reduced.

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

Model statistics
\(\log(1+x)\)-transformed DV
Multiple \(R^2\) 0.202
Multiple \(R^2_{adj}\) 0.167
\(F_{3,68}\) 5.744
Sig. (\(p\)) 0.001
Resid. SD 0.600
Resid. df 68
Analysis of Variance table
\(\log(1+x)\)transformed DV
Term SS d.f. MS \(F\) Sig. (\(p\))
Condition 6.205 3 2.068 5.744 0.001
Residuals 24.485 68 0.360

Tukey's HSD post-hoc tests
\(\log(1+x)\)-transformed DV
Contrast Null Estimate Sig. (\(p\))
React.-No task 0 0.039 0.997
Tetris-No task 0 −0.148 0.881
React.-Tetris 0 0.187 0.787
Tetris-R. & T. 0 0.547 0.039
R. & T.-No task 0 −0.695 0.005
React.-R. & T. 0 0.734 0.003

9.3.2 Rank

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

Model statistics
Rank-transformed DV
Multiple \(R^2\) 0.191
Multiple \(R^2_{adj}\) 0.155
\(F_{3,68}\) 5.350
Sig. (\(p\)) 0.002
Resid. SD 19.046
Resid. df 68
Analysis of Variance table
Rank-transformed DV
Term SS d.f. MS \(F\) Sig. (\(p\))
Condition 5,822.500 3 1,940.833 5.350 0.002
Residuals 24,667.500 68 362.757

Tukey's HSD post-hoc tests
Rank-transformed DV
Contrast Null Estimate Sig. (\(p\))
React.-No task 0 1.833 0.992
Tetris-No task 0 −4.944 0.864
React.-Tetris 0 6.778 0.710
Tetris-R. & T. 0 16.056 0.064
R. & T.-No task 0 −21.000 0.008
React.-R. & T. 0 22.833 0.003

9.4 Nonparametric

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Days_One_to_Seven_Number_of_Intrusions by Condition
## Kruskal-Wallis chi-squared = 14, df = 3, p-value = 0.004
Dunn's nonparametric post-hoc tests
Sorted by significance
Contrast Z statistic Sig. (\(p\))
React. - Tetris 0.981 0.979
No task - Tetris 0.716 0.948
No task - React. −0.265 0.791
R. & T. - Tetris −2.324 0.080
No task - R. & T. 3.040 0.012
R. & T. - React. −3.306 0.006

References

James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J. R., Milton, A. L., & Holmes, E. A. (2015). Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. Psychological Science, 26(8), 1201–1215. Retrieved from https://journals.sagepub.com/doi/abs/10.1177/0956797615583071